Abstract

The paper deals with new experiments and corresponding numerical simulations to study the effect of stress state on damage and fracture behavior of ductile metals. Different branches of ductile damage criteria are considered corresponding to various mechanisms depending on stress intensity, stress triaxiality and the Lode parameter. New experiments with two-dimensionally loaded specimens have been developed covering a wide range of stress triaxialities and Lode parameters in the tension, shear and compression domains. Scanning electron microscope (SEM) analyses of the fracture surfaces show various failure modes corresponding to different stress states detected by numerical simulations of the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.