Abstract

After being the standard plant propagation protocol for decades, cultures of Arabidopsis thaliana sealed with Parafilm remain common today out of practicality, habit, or necessity (as in co-cultures with microorganisms). Regardless of concerns over the aeration of these cultures, no investigation has explored the CO2 transport inside these cultures and its effect on the plants. Thereby, it was impossible to assess whether Parafilm-seals used today or in thousands of older papers in the literature constitute a treatment, and whether this treatment could potentially affect the study of other treatments.For the first time we report the CO2 concentrations in Parafilm-sealed cultures of A. thaliana with a 1 minute temporal resolution, and the transcriptome comparison with aerated cultures. The data show significant CO2 deprivation to the plants, a drastic suppression of photosynthesis, respiration, starch accumulation, chlorophyll biosynthesis, and an increased accumulation of reactive oxygen species. Most importantly, CO2 deprivation occurs as soon as the cotyledons emerge. Gene expression analysis indicates a significant alteration of 35% of the pathways when compared to aerated cultures, especially in stress response and secondary metabolism processes. On the other hand, the observed increase in the production of glucosinolates and flavonoids suggests intriguing possibilities for CO2 deprivation as an organic biofortification treatment in high-value crops.

Highlights

  • Thousands of papers each year (~14500 since 2014[1]) use plant cultures in Petri dishes–seeds germinated in sealed, square, vertically held, gel plates–as a model system

  • Photosynthesis and respiration strongly modify the concentration of CO2 ([CO2]) inside Petri dish cultures of A. thaliana (15 plants per dish, 0.5 Murashige-Skoog nutrient medium with 1% by weight of sucrose[18])

  • With Micropore seals instead, the depletion of the [CO2] averaged over the light period (Fig 1B, open orange circles) becomes only evident when the first true leaves emerge, after which it decreases by approximately 26 ppm per day to reach 305 ppm at day 14

Read more

Summary

Introduction

Thousands of papers each year (~14500 since 2014[1]) use plant cultures in Petri dishes–seeds (typically of Arabidopsis thaliana) germinated in sealed, square, vertically held, gel plates–as a model system. Calibration curves of CO2 sensors used to measure CO2 concentrations in the room and in Parafilm and Micropore wrapped plant cultures in Fig 1A are shown in S2 Fig with the fitting parameters shown in S1 Table. CO2 concentrations were measured simultaneously inside and outside of Petri dishes sealed with Parafilm or Micropore tape and containing 5 or 15 A. thaliana plants (S5 and S6 Figs).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.