Abstract

An analytical model is developed to predict the residual thermal stresses in a single cell of solid oxide fuel cells (SOFCs), which consists of a thick porous 8 mol% Y 2O 3 stabilized zirconia/nickel oxide (8YSZ/NiO) anode, a dense 8YSZ electrolyte and a porous lanthanum strontium manganite (LSM) cathode. The simulated stresses in the cell at room temperature, which are resulted from the contraction mismatch of its components, indicate that the major principal stress in the anode is tensile while the electrolyte and cathode are under compressive stresses. The stress in one component decreases with the increase of its thickness when the thicknesses of the other two components are fixed, and the decrease of the tensile stress in the anode will cause the increase of the compressive stresses in both the cathode and the electrolyte, and vice versa. The analysis also reveals that the anode is the part that is most susceptible to fracture since the tensile thermal stress is so high that it reaches to the fracture strength of the anode material. The Weibull statistic is employed to estimate the failure probability of the anode. The simulation results indicate that the anode failure probability decreases with the increase of the anode thickness and the decrease of the electrolyte thickness. To keep the anode failure probability less than 1E−06, the anode thickness should be greater than 0.7 mm for a cell with an electrolyte thickness of 10 μm and a cathode thickness of 20 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.