Abstract

IntroductionThe spectrum of critical illness-related corticosteroid insufficiency (CIRCI) in severe traumatic brain injury (TBI) is not fully defined and no effective treatments for TBI-induced CIRCI are available to date. Despite growing interest in the use of stress-dose hydrocortisone as a potential therapy for CIRCI, there remains a paucity of data regarding its benefits following severe TBI. This study was designed to investigate the effects of stress-dose hydrocortisone on CIRCI development and neurological outcomes in a rat model of severe traumatic brain injury.MethodsRats were subjected to lateral fluid percussion injury of 3.2-3.5 atmosphere. These rats were then treated with either a stress-dose hydrocortisone (HC, 3 mg/kg/d for 5 days, 1.5 mg/kg on day 6, and 0.75 mg on day 7), a low-dose methylprednisolone (MP, 1 mg/kg/d for 5 days, 0.5 mg/kg on day 6, and 0.25 mg on day 7) or control saline solution intraperitoneally daily for 7 days after injury.ResultsWe investigated the effects of stress-dose HC on the mortality, CIRCI occurrence, and neurological deficits using an electrical stimulation test to assess corticosteroid response and modified neurological severity score (mNSS). We also studied pathological changes in the hypothalamus, especially in the paraventricular nuclei (PVN), after stress-dose HC or a low dose of MP was administered, including apoptosis detected by a TUNEL assay, blood–brain barrier (BBB) permeability assessed by brain water content and Evans Blue extravasation into the cerebral parenchyma, and BBB integrity evaluated by CD31 and claudin-5 expression. We made the following observations. First, 70% injured rats developed CIRCI, with a peak incidence on post-injury day 7. The TBI-associated CIRCI was closely correlated with an increased mortality and delayed neurological recovery. Second, post-injury administration of stress-dose HC, but not MP or saline increased corticosteroid response, prevented CIRCI, reduced mortality, and improved neurological function during the first 14 days post injury dosing. Thirdly, these beneficial effects were closely related to improved vascular function by the preservation of tight junctions in surviving endothelial cells, and reduced neural apoptosis in the PVN of hypothalamus.ConclusionsOur findings indicate that post-injury administration of stress-dose HC, but not MP reduces CIRCI and improves neurological recovery. These improvements are associated with reducing the damage to the tight junction of vascular endothelial cells and blocking neuronal apoptosis in the PVN of the hypothalamus.

Highlights

  • The spectrum of critical illness-related corticosteroid insufficiency (CIRCI) in severe traumatic brain injury (TBI) is not fully defined and no effective treatments for TBI-induced CIRCI are available to date

  • The reduction of CIRCI was paralleled with a decrease in TBI mortality (Pearson Chi-Square = 20.972, P

  • We showed that stress-dose HC reduced neuronal apoptosis in the paraventricular nuclei (PVN) of the hypothalamus induced by TBI

Read more

Summary

Introduction

The spectrum of critical illness-related corticosteroid insufficiency (CIRCI) in severe traumatic brain injury (TBI) is not fully defined and no effective treatments for TBI-induced CIRCI are available to date. Despite growing interest in the use of stress-dose hydrocortisone as a potential therapy for CIRCI, there remains a paucity of data regarding its benefits following severe TBI. This study was designed to investigate the effects of stress-dose hydrocortisone on CIRCI development and neurological outcomes in a rat model of severe traumatic brain injury. Critical illness-related corticosteroid insufficiency (CIRCI), defined by the American College of Critical Care Medicine, is used to describe dysfunctions of the hypothalamicpituitary-adrenal (HPA) axis that occurs during critical illness [2]. It is characterized by an exaggerated and protracted pro-inflammatory response and corticosteroid resistance, leading to an inadequate corticosteroid response to severe stress [3]. The incidence of CIRCI in severe TBI has not been fully defined [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.