Abstract

Improved re-establishment of desiccation tolerance was studied in germinated seeds of Tabebuia impetiginosa Mart. by exposing to a polyethylene glycol solution prior to desiccation. The effects of different osmotic potentials and drying rates were studied. In addition, temporary temperature stress and exogenous abscisic acid were applied to evaluate their effect on desiccation tolerance of the protruded radicle. An osmotic potential of −1.7 MPa at 5°C followed by slow drying was most effective in the re-establishment of desiccation tolerance in protruded radicles with a length up to 3 mm. An osmotic potential of −1.4 or −2.0 MPa was less effective. Fast drying completely prevented the re-induction of desiccation tolerance. Cold shock or heat shock prior to osmotic treatment as well as abscisic acid added to the osmotic solution improved desiccation tolerance of protruded radicles. Surprisingly, survival of the germinated seed did not depend on re-establishment of desiccation tolerance in the protruded radicle. Even after the protruded radicle became necrotic and died, the production of adventitious roots from the hypocotyls allowed for survival and the development of high quality seedlings. Thus, T. impetiginosa appeared to be well adapted to the seasonally dry biome in which the species thrives via mechanisms that offer protection against desiccation in the young seedling stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.