Abstract

In analyzing hyperbolic shells of revolution with non-axisymmeteric imperfections, an approximate method based on simulating the effect of imperfections by the application of fictitious normal pressure loading on the perfect shell is investigated. In the analysis of a shell of revolution with a bulge-type imperfection under non-axisymmetric loads, an efficient algorithm of applying the method is developed: the effect of individual curvature errors on stress resultants and couples are separately considered, while the interactions among various curvature errors are properly treated in the analysis by an iterative procedure. This algorithm avoids repeated analyses for non-axisymmetric loads and may be implemented with a purely axisymmetric analysis capability. A hyperbolic cooling tower shell with a bulge-type imperfection is analyzed under dead load and wind load conditions by the equivalent load method. A direct analysis of the imperfect shell is also made by a specialized finite element program. Through numerical studies, the accuracy and applicability of the equivalent load method are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.