Abstract

In this paper, the axisymmetric torsional problem of a coating structure consisting of a surface coating, a functionally graded layer and a substrate under a rigid cylindrical punch is investigated. The coating and substrate are homogeneous materials with distinct physical properties while the intermediate layer is inhomogeneous with its shear modulus changing exponentially along the thickness direction. The Hankel integral transform technique is employed to reduce the torsional problem to a singular integral equation with a Cauchy kernel. The circumferential shear stress and displacement fields in the coating structure are calculated by solving the integral equation numerically. The results show that the stiffness ratio has significant effect on the distribution of the circumferential stress and displacement at the interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.