Abstract
A scale bridging strategy based in molecular statics and molecular dynamics simulations in combination with transition state theory has been developed to determine the flow stress of Al–Cu alloy containing Guinier–Preston zones. The athermal contribution to the flow stress was determined from the Taylor model, while the thermal contribution was obtained from the obstacle strength and the free energy barrier. These two magnitudes were obtained by means of molecular statics and molecular dynamics simulations of the interaction of edge dislocations with Guinier–Preston zones in two different orientations. The predictions of the model were compared with experimental data and were in reasonable agreement, showing the potential of atomistic simulations in combination with transition state theory to predict the flow stress of metallic alloys strengthened with precipitates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.