Abstract
Interstitial alloying has been proved to be a promising option to improve the mechanical properties in various commercial alloys. Herein, we systematically investigate the microstructure evolution and mechanical property change of CoCrFeMnNi high-entropy alloys (HEAs) with varied nitrogen contents as an interstitial alloying element. To equilibrate the thermal history, all the alloys are heat-treated as follows: homogenization (1100 ℃ for 20 h), cold-rolling (reduction ratio of 60%), and subsequent annealing (900 ℃ for 3 min). In N1 alloy (CoCrFeMnNi HEA with 1 at% of nitrogen doping), we could observe fully recrystallized grains with a small amount of Cr2N precipitates. As the nitrogen contents increased to 3 at% (N3 alloy), the recrystallization was significantly retarded by the formation of 3 different types of Cr2N precipitates, leading to having ~60% of non-recrystallized grains. Furthermore, the various precipitates let the alloy have a heterogeneous complex microstructure. With increasing nitrogen contents, the yield strength and ultimate tensile strength can be improved without significant reduction of ductility, which exceeds those of Cantor HEA by nearly a factor of two. The effect of each strengthening mechanism on the improved strength in heterogeneous complex microstructure is systematically discussed. These results are expected to provide a novel guideline on how to effectively control key properties of HEAs by interstitial alloying through tailoring of heterogeneous microstructure as well as the inherent complexity of HEAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.