Abstract

AbstractA growing body of research has underscored the radiative impact of mineral dust in influencing Indian summer monsoon rainfall variability. However, the various aerosol‐cloud‐precipitation interaction mechanisms remain poorly understood. Here we analyze multisatellite observations to examine dust‐induced modification in ice clouds and precipitation susceptibility. We show contrasting dust‐induced changes in ice cloud regimes wherein despite a 25% reduction in ice particle radius in thin ice clouds, we find ~40% increase in ice particle radius and ice water path in thick ice clouds resulting in the cloud deepening and subsequently strengthened precipitation susceptibility, under strong updraft regimes. The observed dust‐ice cloud‐precipitation interactions are supported by a strong correlation between the interannual monsoon rainfall variability and dust frequency. This microphysical‐dynamical coupling appears to provide negative feedback to aerosol‐cloud interactions, which acts to buffer enhanced aerosol wet scavenging. Our results underscore the importance of incorporating meteorological regime‐dependent dust‐ice cloud‐precipitation interactions in climate simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.