Abstract

Metallurgy Jet turbine blades and other objects with ultrahigh strength at high temperatures are made of special alloys that are often grown as costly single crystals to help avoid failure. Yang et al. discovered that adding a small amount of boron in a nickel-cobalt-iron-aluminum-titanium alloy creates an ultrahigh-strength material. Critically, the alloy has a nanoscale-disordered interface in between crystal grains that substantially improves the ductility while preventing high-temperature grain coarsening. This alloy design creates attractive high-temperature properties for various applications. Science , this issue p. [427][1] [1]: /lookup/doi/10.1126/science.abb6830

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.