Abstract

Chatter is a major problem causing poor surface finish, low material removal rate, machine tool failure, increased tool wear, excessive noise and thus increased cost for machining applications. Chatter vibrations can be avoided using stability diagrams for which tool point frequency response function (FRF) must be determined accurately. During cutting operations, due to gyroscopic moments, centrifugal forces and thermal expansions bearing dynamics change resulting in tool point FRF variations. In addition, gyroscopic moments on spindle–holder–tool assembly cause separation of modes in tool point FRF into backward and forward modes which will lead to variations in tool point FRF. Therefore, for accurate stability predictions of machining operations, effects of operational conditions on machine tool dynamics should be considered in calculations. In this study, spindle bearing dynamics are identified for various spindle rotational speeds and cutting forces. Then, for a real machining center, tool point FRFs under operating conditions are determined using the identified speed dependent bearing dynamics and the mathematical model proposed. Moreover, effects of gyroscopic moments and bearing dynamics variations on tool point FRF are examined separately. Finally, computationally determined tool point FRFs using revised bearing parameters are verified through chatter tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.