Abstract

Various strength criteria that may be used in semi-analytical methods for ultimate strength prediction of arbitrarily stiffened plates are studied. The main objective is to evaluate the applicability of the criteria in ultimate strength predictions of in-plane loaded plates, both in local and global bending. The equilibrium path is traced using large deflection theory and the Rayleigh–Ritz approach on an incremental form. The approach is able to account for the reserve strength of slender plates in the postbuckling region. Results are compared with fully nonlinear finite element analyses for a variety of plate dimensions and stiffeners with regular and irregular arrangements. Good agreement is obtained with a combination of a plate and a stiffener criterion. With the considered criteria included, the method is computationally very efficient and gives rather high numerical accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.