Abstract

Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.