Abstract

In this paper we model a class of stream and block ciphers as systems of (ordinary) explicit difference equations over a finite field. We call this class “difference ciphers” and we show that ciphers of application interest, as for example systems of LFSRs with a combiner, Trivium and KeeLoq, belong to the class. By using Difference Algebra, that is, the formal theory of difference equations, we can properly define and study important properties of these ciphers, such as their invertibility and periodicity. We describe then general cryptanalytic methods for difference ciphers that follow from these properties and are useful to assess the security. We illustrate such algebraic attacks in practice by means of the ciphers Bivium and KeeLoq.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.