Abstract

The Nopal I site in the Peña Blanca uranium district has a number of geologic and hydrologic similarities to the proposed high-level radioactive waste repository at Yucca Mountain, making it a useful analogue to evaluate process models for radionuclide transport. The PB-1 well was drilled in 2003 at the Nopal I uranium deposit as part of a DOE-sponsored natural analogue study to constrain processes affecting radionuclide transport. The well penetrates through the Tertiary volcanic section down to Cretaceous limestone and intersects the regional aquifer system. The well, drilled along the margin of the Nopal I ore body, was continuously cored to a depth of 250 m, thus providing an opportunity to document the local stratigraphy. Detailed observations of these units were afforded through petrographic description and rockproperty measurements of the core, together with geophysical logs of the well. The uppermost unit encountered in the PB-1 well is the Nopal Formation, a densely welded, crystal-rich, rhyolitic ashflow tuff. This cored section is highly altered and devitrified, with kaolinite, quartz, chlorite, and montmorillonite replacing feldspars and much of the groundmass. Breccia zones within the tuff contain fracture fillings of hematite, limonite, goethite, jarosite, and opal. A zone of intense clay alteration, encountered in the depth interval 17.45-22.30 m, was interpreted to represent the basal vitrophyre of this unit. Underlying the Nopal Formation is the Coloradas Formation, which consists of a welded lithic-rich rhyolitic ash-flow tuff. The cored section of this unit has undergone devitrification and oxidation, and has a similar alteration mineralogy to that observed in the Nopal tuff. A sharp contact between the Coloradas tuff and the underlying Pozos Formation was observed at a depth of 136.38 m. The Pozos Formation consists of poorly sorted conglomerate containing clasts of subangular to subrounded fragments of volcanic rocks, limestone, and chert. Three thin (2-6 m) intervals of intercalated pumiceous tuffs are present within this unit. The contact between the Pozos Formation and the underlying Cretaceous limestone basement was encountered at a depth of 244.40 m. The water table is located at a depth of ~223 m. Several zones with elevated radioactivity in the PB-1 core occur above the current water table. These zones may be associated with changes in redox conditions that could have resulted in the precipitation of uraninite from downward-flowing waters transporting U from the overlying Nopal deposit. All of the intersected units have low (typically submillidarcy) matrix permeability, thus fluid flow in this area is dominated by fracture flow. These stratigraphic and rock-property observations can be used to constrain flow and transport models for the Peña Blanca natural analogue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.