Abstract
The design, development, and manufacturing of new materials continue to be an ongoing challenge for scientists and engineers. Because of similarities to biological systems having self-repairable properties, polymer networks are of particular importance and interest, and if designed properly, may provide an unprecedented opportunity for mimicking biological systems. This can be accomplished through the formation of nanostructured stimuli-responsive networks that individually or collectively respond to internal or external stimuli. This article outlines selected recent developments and future trends that will formulate foundation for the development of stratified heterogeneous stimuli-responsive polymer networks capable of reorganizing, self-healing, or signaling. The primary focus is on the physico-chemical attributes of multi-component polymer networks with localized glass transition temperatures capable of stratification and exhibiting stimuli-responsiveness or recognition attributes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.