Abstract

A fundamental attribute of the vertebrate visual system is the segregation of ON and OFF pathways signalling increments and decrements of light. In the mature retina, dendrites of ON- and OFF-centre retinal ganglion cells (RGCs) stratify in different sublaminae of the inner plexiform layer (IPL), and are differentially innervated by two types of bipolar cells which depolarize and hyperpolarize on exposure to light. This stratification of ON and OFF RGCs is achieved by the gradual restriction of their dendrites which ramify throughout the IPL early in development. The factors underlying this regressive event are unknown. Dendritic stratification occurs around the time that bipolar cells form synapses in the IPL, which raises the possibility that synaptic activity is involved in this process. Here we test this hypothesis by treating the developing cat retina with the glutamate analogue 2-amino-4-phosphonobutyric acid (APB), which hyperpolarizes ON cone bipolar and rod bipolar cells, thereby preventing their release of glutamate. We report that intraocular injection of APB during the period when dendritic stratification normally occurs prevents the formation of structurally segregated ON and OFF retinal pathways. These results provide evidence that glutamate-mediated afferent activity regulates the remodelling of RGC dendrites during development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.