Abstract

EGFR-TKIs were used in NSCLC patients with actionable EGFR mutations and prolong prognosis. However, most patients treated with EGFR-TKIs developed resistance within around one year. This suggests that residual EGFR-TKIs resistant cells may eventually lead to relapse. Predicting resistance risk in patients will facilitate individualized management. Herein, we built an EGFR-TKIs resistance prediction (R-index) model and validate in cell line, mice, and cohort. We found significantly higher R-index value in resistant cell lines, mice models and relapsed patients. Patients with an elevated R-index had significantly shorter relapse time. We also found that the glycolysis pathway and the KRAS upregulation pathway were related to EGFR-TKIs resistance. MDSC is a significant immunosuppression factor in the resistant microenvironment. Our model provides an executable method for assessing patient resistance status based on transcriptional reprogramming and may contribute to the clinical translation of patient individual management and the study of unclear resistance mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.