Abstract
In this work, two different strategies for the development of amaranth protein isolate (API)-based films were evaluated. In the first strategy, ultrathin films were produced through spin-coating nanolayering, and the effects of protein concentration in the spin coating solution, rotational speed, and number of layers deposited on the properties of the films were evaluated. In the second strategy, cellulose nanocrystals (CNCs) were incorporated through a casting methodology. The morphology, optical properties, and moisture affinity of the films (water contact angle, solubility, water content) were characterized. Both strategies resulted in homogeneous films with good optical properties, decreased hydrophilic character (as deduced from the contact angle measurements and solubility), and improved mechanical properties when compared with the neat API-films. However, both the processing method and film thickness influenced the final properties of the films, being the ones processed through spin coating more transparent, less hydrophilic, and less water-soluble. Incorporation of CNCs above 10% increased hydrophobicity, decreasing the water solubility of the API films and significantly enhancing material toughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.