Abstract

This article illustrates a method by which arbitrarily complex series/parallel reliability systems can be analyzed. The method is illustrated with the series–parallel and parallel–series systems. Analytical expressions are determined for the investments and utilities of the defender and the attacker, depend on their unit costs of investment for each component, the contest intensity for each component, and their evaluations of the value of system functionality. For a series–parallel system, infinitely many components in parallel benefit the defender maximally regardless of the finite number of parallel subsystems in series. Conversely, infinitely many components in series benefit the attacker maximally regardless of the finite number of components in parallel in each subsystem. For a parallel–series system, the results are opposite. With equivalent components, equal unit costs for defender and attacker, equal intensity for all components, and equally many components in series and parallel, the defender always prefers the series–parallel system rather than the parallel–series system, and converse holds for the attacker. Hence from the defender's perspective, ceteris paribus, the series–parallel system is more reliable, and has fewer “cut sets” or failure modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.