Abstract

Surface engineering of Zr51.3Al8.5Cu31.3Ni4Ti4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10-41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed crystalline cubic ZrO2 (c-ZrO2), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2, as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the crystalline c-ZrO2, while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of -1.4 GPa in the internal oxidation zone. The strain and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.