Abstract

Bioaccumulation of Cd2+ in soil bacteria might represent an important route of metal transfer to associated mycorrhizal fungi and plants and may have potential as a tool to accelerate Cd2+ extraction in the bioremediation of contaminated soils. The present study examined the bioaccumulation of Cd2+ in 15 bacterial strains representing three phyla (Firmicutes, Proteobacteria, and Bacteroidetes) that were isolated from the rhizosphere, ectomycorrhizae, and fruitbody of ectomycorrhizal fungi. The strains Pseudomonas sp. IV-111-14, Variovorax sp. ML3-12, and Luteibacter sp. II-116-7 displayed the highest biomass productivity at the highest tested Cd2+ concentration (2 mM). Microscopic analysis of the cellular Cd distribution revealed intracellular accumulation by strains Massilia sp. III–116-18, Pseudomonas sp. IV-111-14, and Bacillus sp. ML1-2. The quantities of Cd measured in the interior of the cells ranged from 0.87 to 1.31 weight % Cd. Strains originating from the rhizosphere exhibited higher Cd2+ accumulation efficiencies than strains from ectomycorrhizal roots or fruitbodies. The high Cd tolerances of Pseudomonas sp. IV-111-16 and Bacillus sp. ML1-2 were attributed to the binding of Cd2+ as cadmium phosphate. Furthermore, silicate binding of Cd2+ by Bacillus sp. ML1-2 was observed. The tolerance of Massilia sp. III-116-18 to Cd stress was attributed to a simultaneous increase in K+ uptake in the presence of Cd2+ ions. We conclude that highly Cd-tolerant and Cd-accumulating bacterial strains from the genera Massilia sp., Pseudomonas sp., and Bacillus sp. might offer a suitable tool to improve the bioremediation efficiency of contaminated soils.Electronic supplementary materialThe online version of this article (doi:10.1007/s11356-014-3489-0) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.