Abstract

Trees are subjected to mechanical loading during their life span or face premature mortality. The strain resulting from loads intercepted by the canopy and transferred throughout the tree is of significant importance, not only for the survival of the tree, but for the safety and well-being of the human population found in close proximity. To test the function of tree orientation to an applied load, static load tests were conducted on 15 mature pin oak trees (Quercus palustris Muenchh.). We applied the static load tests to tilt the trees 0.1° from natural position. We used a digital image correlation system to map strain in the leeward, windward, and tangential roots in the root-stem transition zone. Results indicate that mean maximum strain magnitudes are similar in the leeward and windward orientations and lower on the tangential orientation. The leeward orientation experienced compressive strain, the windward orientation experienced tensile strain, and the tangential orientation had both tensile and compressive strain. This information provides the arboricultural and plant science sectors with a better understanding of how loading force moves through trees and will further enhance tree risk assessment and root zone management protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.