Abstract
Digital Image Correlation (DIC) is a new advanced technique for measuring the deformation of a specimen using high-resolution images. It has been used by numerous researchers since it can measure the deformation of specimens without interference because it is contactless. Moreover, the DIC technique can be applied to any materials to which normal measuring equipment is difficult to attach such as Fiber-Reinforced Polymer (FRP) grid in this paper, undulated and small surfaces. The DIC technique is easy to set up and provides reliable results compared to conventional equipment like a strain gauge. Although it is good, its associated equipment is too expensive to be readily affordable. Hence, this paper uses an open-source DIC program called Ncorr that works in MATLAB to analyze deformations of six FRP grids from direct tensile tests by comparing their results to the results from a strain gauge. Young’s modulus—calculated from ASTM 3039, ACI 440-3R-04, and regression analysis—of each specimen will be used for comparison. The results show that the difference between Young’s modulus from DIC and strain gauge is <5% if the stress–strain graph of data from the strain gauge is perfectly linear without straying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.