Abstract

We investigate the magnetic-field- and temperature-dependent transport properties of CVD-grown graphene transferred to a flexible substrate (Kapton) and subjected to externally applied strain. In zero magnetic field, a logarithmic temperature-dependent conductivity correction, resulting from strong electron–electron interaction, becomes weaker with the application of strains as large as 0.6% because of an increased rate of chiral-symmetry-breaking scattering. With the application of a perpendicular magnetic field, we also observe positive magnetoconductance at low temperature (T = 5 K) due to weak localization. This magnetoconductance is suppressed with increasing strain, concomitant with a rapid decrease of the intervalley scattering rate (). Our results are in good agreement with theoretical expectations and are consistent with a strain-induced decoupling between graphene and its underlying Kapton substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.