Abstract

The maximum strain and strain rate experienced during friction stir welding/processing (FSW/P) has remained quite unclear, despite various efforts. Knowledge of strain and strain rate is important for understanding the subsequent evolution of grain structure, and serves as a basis for verification of various models as well. In the present study, we facilitated the breaking and embedding of the pin into the workpiece of cast Al-Si-Mg alloy during FS to obtain "frozen" samples for analysis. Metallographic evidence has indicated that in the leading transitional zone the strain gradient increased rapidly before entering into the thread space. Analysis of the deformed dendrites has suggested that the strain was ∼ 3.5 and the strain rate was ∼ 85 s-1 when the deforming material entered the thread space. The heavily deformed material then formed a rotational zone confined within thread spaces rotating largely with the pin, depositing a large part on the trailing side of the pin. Thus, once into the thread spaces, further strain is low and strain rate should decrease considerably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.