Abstract
The human brain is an enormous scientific challenge. Knowledge of the complete map of neuronal connections (connectome) is essential for understanding how neuronal circuits encode information and the brain works in health and disease. Nanoscale connectomes are created for a few small animals but not yet for the human. The key challenges in the development of a whole human brain model at the nanoscale are data acquisition and computing including big data and high performance computing. This work focuses on big data and volumetric and geometric modeling of brain morphology at the micro- and nanoscales. It presents the volumetric and four geometric neuronal models and estimates the storage required for them. It introduces four geometric neuronal models: straight wireframe, enhanced wireframe, straight polygonal, and enhanced polygonal. The volumetric model requires approximately from 4.2 to 33.6 petabytes (PB) at the microscale up to 5,600,000 exabytes (EB) at the nanoscale. The straight wireframe model requires 18 PB at the microscale and 24 PB at the nanoscale. The enhanced parabolic wireframe model needs 36 PB at the microscale and 48 PB at the nanoscale, whereas the enhanced cubic model requires 54 PB at the microscale and 72 PB at the nanoscale. The straight polygonal model requires 24 PB at the microscale and 32 PB at the nanoscale. The enhanced parabolic polygonal model needs 48 PB at the microscale and 64 PB at the nanoscale, while the enhanced cubic model needs 72 PB at the microscale and 96 PB at the nanoscale. The straight wireframe model of 18 PB is sufficient to enable computing of the human synaptome and subsequently the connectome. The only operational supercomputer able to provide such storage is the world’s first exascale supercomputer Frontier. The sizes of the volumetric and geometric models are comparable at the microscale, however, their difference is dramatic at the nanoscale; for the 10 nm resolution the geometric models are smaller approximately from 58 to 233 thousand times, and for the 1 nm resolution from 58 to 233 million times. This novel work is an extended version of a conference paper [15] and it represents a step forward toward the development of the human whole brain model at the nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.