Abstract

Developing the thermodynamics of nanoscale friction is needed in a wide range of tribological applications, where the key objective is to optimally control the energy dissipation. Here we show that modern stochastic thermodynamics allows us to interpret the measurements obtained by friction force microscopy, which is the standard tool for investigating the frictional properties of materials, in terms of basic thermodynamics concepts such as fluctuating work and entropy. We show that this allows the identification of the heat produced during the friction process as an unambiguous measure of thermodynamic irreversibility. We have applied this procedure to quantify the heat produced during the frictional sliding in a broad velocity range, and we observe velocity-dependent scaling behavior, which is useful for interpreting the experimental outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.