Abstract
Two important characteristics encountered in many real-world scheduling problems are heterogeneous processors and a certain degree of uncertainty about the sizes of jobs. In this paper we address both, and study for the first time a scheduling problem that combines the classical unrelated machine scheduling model with stochastic processing times of jobs. Here, the processing time of job j on machine i is governed by random variable P_{ij} , and its realization becomes known only upon job completion. With w_j being the given weight of job j, we study the objective to minimize the expected total weighted completion time E[Sum w_j.C_j] , where C_j is the completion time of job j. By means of a novel time-indexed linear programming relaxation, we compute in polynomial time a scheduling policy with performance guarantee (3+D)/2+e. Here, e>0 is arbitrarily small, and D is an upper bound on the squared coefficient of variation of the processing times. When jobs also have individual release dates r_{ij}, our bound is (2+D)+e. We also show that the dependence of the performance guarantees on D is tight. Via D=0, currently best known bounds for deterministic scheduling on unrelated machines are contained as special case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.