Abstract
This paper presents a new stochastic preconditioning approach for large sparse matrices. For the class of matrices that are rowwise and columnwise irreducibly diagonally dominant, we prove that an incomplete $\rm{LDL^T}$ factorization in a symmetric case or an incomplete LDU factorization in an asymmetric case can be obtained from random walks and used as a preconditioner. It is argued that our factor matrices have better quality, i.e., better accuracy-size trade-offs, than preconditioners produced by existing incomplete factorization methods. Therefore a resulting preconditioned Krylov-subspace iterative solver requires less computation than traditional methods to solve a set of linear equations with the same error tolerance. The advantage increases for larger and denser matrices. These claims are verified by numerical tests, and we provide techniques that can potentially extend the theory to non-diagonally-dominant matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.