Abstract

A nonthermal particle acceleration mechanism involving the interaction of a charged particle with multiple magnetic islands is proposed. The original Fermi acceleration model, which assumes randomly distributed magnetic clouds moving at random velocity V(c) in the interstellar medium, is known to be of second-order acceleration of O(V(c)/c)(2) owing to the combination of head-on and head-tail collisions. In this Letter, we reconsider the original Fermi model by introducing multiple magnetic islands during reconnection instead of magnetic clouds. We discuss that the energetic particles have a tendency to be distributed outside the magnetic islands, and they mainly interact with reconnection outflow jets. As a result, the acceleration efficiency becomes first order of O(V(A)/c), where V(A) and c are the Alfvén velocity and the speed of light, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.