Abstract

In this paper we develop a combined simulation and optimization approach for solving difficult decision problems on complex dynamic networks. For a specific reference problem we consider a telecommunication service provider who offers a telecommunication service to a market with network effects. More particularly, the service consumption of an individual user depends on both idiosyncratic characteristics and the popularity of this service among the customer’s immediate neighborhood. Both the social network and the individual user preferences are largely heterogeneous and changing over time. In addition the service provider’s decisions are made in absence of perfect knowledge about user preferences. The service provider pursues the strategy of stimulating the demand by offering differentiated prices to the customers. For finding the optimal pricing we apply a stochastic quasi-gradient algorithm that is integrated with a simulation model that drives the evolution of the network and user preferences over time. We show that exploiting the social network structure and implementing differentiated pricing can substantially increase the revenues of a service provider operating on a social network. More generally, we show that stochastic gradient methods represent a powerful methodology for the optimization of decisions in social networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.