Abstract

House and building energy management systems (HEMS) are becoming key when it comes to assure grid stability and to offer flexibility. At the same time, energy systems technology has evolved to enable energy storage systems and electric vehicles to be managed together with local generated energy taking into consideration the preferences of the household owner. Contributing to this tendency, this work presents a stochastic optimization platform (SOFW) for optimal control using dynamic programming and stochastic optimization models. A stochastic optimization model involving a household composed of photovoltaics, energy storage system and an electric vehicle is designed and tested within SOFW. The uncertainties of the plug-in time and state of charge of the battery of the electric vehicle are modeled using a Markovian process and a Monte-Carlo simulation. The results showed that the proposed stochastic optimization model can be solved using dynamic programming and deployed as a continuous optimal control within SOFW. The system will be deployed shortly in Italy within one use case of the Storage 4 Grid (S4G) project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.