Abstract

There are different methods to quantify the amount of uncertainties in the analysis of structures and their design procedures. The efficiency and the suitability of each method depend on the type of analysis and the load scenario that will be used for this analysis. In this paper, different uncertainty propagation methods are used to quantify the amount of uncertainties in the wind load analysis procedures to quantify the load impact on the gable roofs of residential buildings. Therefore, Direct Monte Carlo Simulation, Importance Sampling, First Order Reliability Method, and Taylor Approximation are used to further investigate the impact of each method on the uncertainty quantification. The selected example structure to perform the analysis is one of the different archetypes that has been used for the tornado analysis in the literature. The different wind load demand parameters and components statistics are used to conduct the different stochastic analyses. The analysis results showed that MCS is the most efficient method with the least coefficient of variation in the simulated wind pressure and the calculated failure probabilities associated with each stochastic model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.