Abstract
Energy-transfer processes strongly affect the performance of lanthanide-doped photonic devices. In this work, we introduce a simple stochastic model of energy-transfer processes and successfully apply it to the example of cross-relaxation (CR) and energy-transfer upconversion (ETU) in amorphous Al2O3:Tm3+ waveguides on silicon intended for lasers operating at ∼2 μm. The stochastic model is based on the rate-equation formalism and considers two spectroscopically distinct ion classes, namely single ions and ions with neighbors (pairs and clusters), with the corresponding ion fractions being dependent on the doping concentration. We prove that a more accurate description of the luminescence properties of amorphous Al2O3:Tm3+ is obtained when accounting for the presence of these distinct ion classes. Based on the developed model, we derive microscopic CR and ETU parameters of CCR = 5.83 × 10–38 cm6 s–1, CETU1 = 0.93 × 10–40 cm6 s–1, and CETU2 = 7.81 × 10–40 cm6 s–1, and determine the laser quantum efficiency ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.