Abstract

In part I of this paper [S. Chen, X. Li, and X. Zhou, SIAM J. Control Optim., 36 (1998), pp. 1685--1702], an optimization model of stochastic linear quadratic regulators (LQRs) with indefinite control cost weighting matrices is proposed and studied. In this sequel, the problem of solving LQR models with system diffusions dependent on both state and control variables, which is left open in part I, is tackled. First, the solvability of the associated stochastic Riccati equations (SREs) is studied in the normal case (namely, all the state and control weighting matrices and the terminal matrix in the cost functional are nonnegative definite, with at least one positive definite), which in turn leads to an optimal state feedback control of the LQR problem. In the general indefinite case, the problem is decomposed into two optimal LQR problems, one with a forward dynamics and the other with a backward dynamics. The well-posedness and solvability of the original LQR problem are then obtained by solving these two subproblems, and an optimal control is explicitly constructed. Examples are presented to illustrate the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.