Abstract

This paper is concerned with stochastic linear quadratic (LQ, for short) optimal control problems in an infinite horizon with constant coefficients. It is proved that the non-emptiness of the admissible control set for all initial state is equivalent to the $L^2$-stabilizability of the control system, which in turn is equivalent to the existence of a positive solution to an algebraic Riccati equation (ARE, for short). Different from the finite horizon case, it is shown that both the open-loop and closed-loop solvabilities of the LQ problem are equivalent to the existence of a static stabilizing solution to the associated generalized ARE. Moreover, any open-loop optimal control admits a closed-loop representation. Finally, the one-dimensional case is worked out completely to illustrate the developed theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.