Abstract

Stochastic gradient descent (SGD) for strongly convex functions converges at the rate \(\mathcal {O}(1/k)\). However, achieving good results in practice requires tuning the parameters (for example the learning rate) of the algorithm. In this paper we propose a generalization of the Polyak step size, used for subgradient methods, to stochastic gradient descent. We prove a non-asymptotic convergence at the rate \(\mathcal {O}(1/k)\) with a rate constant which can be better than the corresponding rate constant for optimally scheduled SGD. We demonstrate that the method is effective in practice, and on convex optimization problems and on training deep neural networks, and compare to the theoretical rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.