Abstract

In this study, we propose and compare stochastic variants of the extra-gradient alternating direction method, named the stochastic extra-gradient alternating direction method with Lagrangian function (SEGL) and the stochastic extra-gradient alternating direction method with augmented Lagrangian function (SEGAL), to minimize the graph-guided optimization problems, which are composited with two convex objective functions in large scale. A number of important applications in machine learning follow the graph-guided optimization formulation, such as linear regression, logistic regression, Lasso, structured extensions of Lasso, and structured regularized logistic regression. We conduct experiments on fused logistic regression and graph-guided regularized regression. Experimental results on several genres of datasets demonstrate that the proposed algorithm outperforms other competing algorithms, and SEGAL has better performance than SEGL in practical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.