Abstract

In this work, stochastic perturbation-based vibration characteristics of cracked bi-material and functionally graded material (FGM) domain with uncertain material properties are investigated using the extended finite element method. The level set function is implemented to track the geometrical discontinuities. The partition of unity-based extrinsic enrichment technique is employed to model the crack and material interface. The exponential law is used to model the graded material properties of FGM. The First-order perturbation technique (FOPT) is implemented to predict the standard deviation of natural frequency for the given uncertainties in the material properties. The numerical results are presented to show the effect of geometrical discontinuities and material randomness on vibration characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.