Abstract
The presence of a high-dimensional stochastic input domain with discontinuities poses major computational challenges in analyzing and quantifying the effects of the uncertainties in a physical system. In this paper, we propose a stochastic collocation method with adaptive mesh refinement (SCAMR) to deal with high dimensional stochastic systems with discontinuities. Specifically, the proposed approach uses generalized polynomial chaos (gPC) expansion with Legendre polynomial basis and solves for the gPC coefficients using the least squares method. It also implements an adaptive mesh (element) refinement strategy which checks for abrupt variations in the output based on a low-order gPC approximation error to track discontinuities or non-smoothness. In addition, the proposed method involves a criterion for checking possible dimensionality reduction and consequently, the decomposition of the original high-dimensional problem to a number of lower-dimensional subproblems. Specifically, this criterion checks all the existing interactions between input parameters of a specific problem based on the high-dimensional model representation (HDMR) method, and therefore automatically provides the subproblems which only involve interacting input parameters. The efficiency of the approach is demonstrated using examples of both smooth and non-smooth problems with number of input parameters up to 500, and the approach is compared against other existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.