Abstract

The heterogeneous system architecture which leverages multicore computing paradigm has become increasingly popular. Nevertheless, timing minimization is still a critical design challenge. Buffer insertion for bundled single-walled carbon nanotubes (SWCNTs) is capable of significantly improving circuit timing of signal nets with limited buffer deployment. However, due to the imperfection of fabricating long straight carbon nanotubes, there exist significant variations on the critical CNT geometric parameters such as the diameter and density, which will affect the circuit performance. On the other hand, the prevailing CNT fabrication uses Chemical Vapor Deposition, where the unidimensional spatial correlation manifests strongly. In this work, a unidimensional variation aware stochastic SWCNT interconnects buffering algorithm is developed to handle fabrication variations of CNTs in buffer insertion. To improve its time complexity, a novel importance sampling based timing evaluation technique is proposed considering unidimensional correlations of variations. The simulation results demonstrate that the unidimensional variation aware importance sampling based stochastic SWCNT interconnects buffering algorithm on average saves more than 30 percent buffer area over copper buffering while satisfying timing constraints. In addition, our proposed stochastic algorithm achieves much better performance than the best case design and the worst case design in terms of timing and buffer cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.