Abstract

In a Fork---Join (FJ) queueing system, an upstream fork station splits incoming jobs into N tasks to be further processed by N parallel servers, each with its own queue; the response time of one job is determined, at a downstream join station, by the maximum of the corresponding tasks' response times. This queueing system is useful to the modeling of multi-service systems subject to synchronization constraints, such as MapReduce clusters or multipath routing. Despite their apparent simplicity, FJ systems are hard to analyze. This paper provides the first computable stochastic bounds on the waiting and response time distributions in FJ systems under full (bijective) and partial (injective) mapping of tasks to servers. We consider four practical scenarios by combining (1a) renewal and (1b) non-renewal arrivals, and (2a) non-blocking and (2b) blocking servers. In the case of non-blocking servers, we prove that delays scale as $$\mathcal {O}(\log N)$$O(logN), a law which is known for first moments under renewal input only. In the case of blocking servers, we prove that the same factor of $$\log N$$logN dictates the stability region of the system. Simulation results indicate that our bounds are tight, especially at high utilizations, in all four scenarios. A remarkable insight gained from our results is that, at moderate to high utilizations, multipath routing makes sense from a queueing perspective for two paths only, i.e., response times drop the most when $$N=2$$N=2; the technical explanation is that the resequencing (delay) price starts to quickly dominate the tempting gain due to multipath transmissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.