Abstract

This paper presents a new method for analyzing the dynamic behavior of train–bridge systems with random rail irregularity aimed at its simplicity, efficiency and accuracy. A vertical train–bridge system is considered, in which the bridge is regarded as a series of simply supported beams, and the train is regarded as a multibody system with suspensions. The Karhunen–Loéve expansion (KLE) is used to simulate the stochastic vertical rail irregularities, and the mean and standard deviation of the system response are calculated by the point estimate method (PEM), based on the Gaussian integration and the dimension reduction method. The proposed KLE–PEM method, which combines the key features of the KLE and PEM, is validated by comparing the results obtained with existing ones. The Monte Carlo simulation (MCS) is used to verify the rationality of the results obtained by the KLE–PEM approach. The results show that the KLE–PEM approach can accurately calculate the response of the vertical train–bridge interaction system with random irregularity. This paper further discusses the responses of the train and bridge system with different speeds for the train.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.