Abstract

This study deals with the stochastic post-buckling and nonlinear free vibration analysis of a laminated composite plate resting on a two parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties. The system properties are modeled as basic random variables. A C 0 nonlinear finite element formulation of the random problem based on higher-order shear deformation theory in the von Karman sense is presented. A direct iterative method in conjunction with a stochastic nonlinear finite element method proposed earlier by the authors is extended to analyze the effect of uncertainty in system properties on the post-buckling and nonlinear free vibration of the composite plates having Winler type of geometric nonlinearity. Mean as well as standard deviation of the responses have been obtained for various combinations of geometric parameters, foundation parameters, stacking sequences and boundary conditions and compared with those available in the literature and Monte Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.