Abstract

During an earthquake, the amplitudes of seismic wave may amplify significantly as it propagates through the soil layers near the ground surface. Analysis of site amplification potential is strongly influenced by the uncertainty associated to the definition of soil thickness and its properties. In this paper, the non-recursive algorithm is used in linear and nonlinear Hybrid Frequency Time Domain (HFTD) approaches for stochastic analysis of site amplification. The non-recursive algorithm causes time reduction of analysis that is the essential base of stochastic analysis. The selected soil stochastic parameters are shear wave velocity, density, damping and thickness. The results of sensitivity analysis also show that the damping ratio is the most effective parameter in PGA at ground surface. The stochastic peak ground acceleration, response spectrum and amplification factor at the ground surface are determined by the two approaches for four sites with different average shear wave velocities. Comparison of the results shows that the nonlinear HFTD approach predicts closer response to real recorded data with respect to linear HFTD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.