Abstract

Due to the excellent mechanical properties and heat resistance, bismaleimide matrix composite materials have been widely used in aircraft. However, they are susceptible to low-energy impacts, such as bird hits, gravel, tools falling, etc., which can easily result in delamination. The delamination can significantly reduce the compression performance of composites and become a potential hazard for aircraft in service. In this paper, a stitching method developed from the Z-pin manufacturing process was proposed to repair delaminated laminates. Firstly, the delaminated area was stitched by fiber bundles that were pre-impregnated with glue. Then, the fiber bundles threading through the laminate become the pins after the curing process, thus producing the bridging effect between delaminated layers. As a result, the in-plane compressive properties of the laminate are enhanced. The parameters, including the size, number, and position of the stitching hole, for the stitching repair were optimized, and the factors affecting the repair effect were discussed through both finite element analysis and experiments. The results showed that for a carbon fiber/bismaleimide composite plate with a circular delamination roughly 30 mm in diameter, the in-plane compressive strength can be recovered from 54.45% to 84.23% of the pristine plate, and the modulus was fully recovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.