Abstract

Surgery is the standard treatment regimen for resectable colorectal cancer (CRC). However, it is very hard to completely remove all cancer cells in clinical practice, leading to the high recurrence rates of the disease. Moreover, the post-surgery tissue adhesion greatly prevents the possibility of reoperation, significantly limiting the long-term surviving of CRC patients. To overcome CRC recurrence and avoid the post-surgery tissue adhesion, this work develops a novel stimulator of interferon genes "STING" membrane based on the coaxial electrospinning technology and hyaluronic acid modification. A reactive oxygen species responsive prodrug of gambogic acid (GB) and a potent STING agonist (CDN) are coloaded in the core-shell structure of the membrane, which endows the loaded drug with sustained and sequential release patterns. The localized delivery of GB and CDN can selectively induce efficient immunogenic cell death of cancer cells and then evoke the systemic anticancer immunity by activating the Cyclic GMP-AMP (cGAMP) synthase/STING pathway. As-designed "STING" membrane not only safely prevents tumor recurrence through the synergistic chemoimmunotherapy but also efficiently avoids the post-surgery tissue adhesion, facilitating the clinical intervention of CRC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.