Abstract

The human nongastric H+-K+-ATPase, ATP1AL1, shown to reabsorb K+ in exchange for H+ or Na+, is localized in the luminal plasma membrane of renal epithelial cells. It is presumed that renal H+-K+-ATPases can be regulated by endocytosis. However, little is known about the molecular mechanisms that control plasma membrane expression of renal H+-K+-ATPases. In our study, activation of protein kinase C (PKC) using phorbol esters (phorbol 12-myristate 13-acetate) leads to clathrin-dependent internalization and intracellular accumulation of the ion pump in stably transfected Madin-Darby canine kidney cells. Functional inactivation of the H+-K+-ATPase by PKC activation is shown by intracellular pH measurements. Proton extrusion capacity of ATP1AL1-transfected cells is drastically reduced after phorbol 12-myristate 13-acetate incubation and can be prevented with the PKC blocker bisindolylmaleimide. Ion pump internalization and inactivation are specifically mediated by the PKC pathway, whereas activation of the protein kinase A pathway has no influence. Our results show that the nongastric H+-K+-ATPase is a specific target for the PKC pathway. Therefore, PKC-mediated phosphorylation is a potential regulatory mechanism for apical nongastric H+-K+-ATPase plasma membrane expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.